BGP Configuration for IXPs

ISP Workshops

Background

- This presentation covers the BGP configurations required for a participant at an Internet Exchange Point
 - It does not cover the technical design of an IXP
 - Nor does it cover the financial and operational benefits of participating in an IXP
 - See the IXP Design Presentation that is part of this Workshop Material set for financial, technical and operational details

Recap: Definitions

- Transit carrying traffic across a network, usually for a fee
 - Traffic and prefixes originating from one AS are carried across an intermediate AS to reach their destination AS
- Peering private interconnect between two ASNs, usually for no fee
- Internet Exchange Point common interconnect location where several ASNs exchange routing information and traffic

IXP Peering Issues

- Only announce your aggregates and your customer aggregates at IXPs
- Only accept the aggregates which your peer is entitled to originate
- Never carry a default route on an IXP (or private) peering router

ISP Transit Issues

Many mistakes are made on the Internet today due to incomplete understanding of how to configure BGP for peering at Internet Exchange Points

Simple BGP Configuration example

Exchange Point Configuration

Exchange Point Example

- Exchange point with 6 ASes present
 - Layer 2 ethernet switch
- Each ISP peers with the other
 - NO transit across the IXP is allowed

Each of these represents a border router in a different autonomous system

Router configuration

- IXP router is usually located at the Exchange Point premises
 - Configuration needs to be such that disconnecting it from the backbone does not cause routing loops or traffic blackholes
- Create a peer-group for IXP peers
 - All outbound policy to each peer will be the same
- Ensure the router is not carrying the default route
 - Or the full routing table (for that matter)

Creating a peer-group & route-map

```
router bgp 100
 neighbor ixp-peer peer-group
 neighbor ixp-peer send-community
 neighbor ixp-peer prefix-list my-prefixes out
 neighbor ixp-peer route-map set-local-pref in
ip prefix-list my-prefixes permit 121.10.0.0/19
                                      Only allow AS100 address
                                     block to IXP peers
route-map set-local-pref permit 10
 set local-preference 150
                            Prefixes heard from IXP peers
                            have highest preference
```

Interface and BGP configuration (1)

```
interface fastethernet 0/0
description Exchange Point LAN
 ip address 120.5.10.1 mask 255.255.255.224
no ip directed-broadcast
no ip proxy-arp
                                IXP LAN BCP configuration
no ip redirects
router bgp 100
neighbor 120.5.10.2 remote-as 110
neighbor 120.5.10.2 peer-group ixp-peer
neighbor 120.5.10.2 prefix-list peer110 in
neighbor 120.5.10.3 remote-as 120
neighbor 120.5.10.3 peer-group ixp-peers
neighbor 120.5.10.3 prefix-list peer120 in
```

Interface and BGP Configuration (2)

```
neighbor 120.5.10.4 remote-as 130
neighbor 120.5.10.4 peer-group ixp-peers
neighbor 120.5.10.4 prefix-list peer130 in
neighbor 120.5.10.5 remote-as 140
neighbor 120.5.10.5 peer-group ixp-peers
neighbor 120.5.10.5 prefix-list peer140 in
neighbor 120.5.10.6 remote-as 150
neighbor 120.5.10.6 peer-group ixp-peers
neighbor 120.5.10.6 prefix-list peer150 in
ip route 121.10.0.0 255.255.224.0 null0
ip prefix-list peer110 permit 122.0.0.0/19
ip prefix-list peer120 permit 122.30.0.0/19
ip prefix-list peer130 permit 122.12.0.0/19
ip prefix-list peer140 permit 122.18.128.0/19
ip prefix-list peer150 permit 122.1.32.0/19
```

Peer-group applied to each peer

Each peer has own inbound filter

- Configuration of the other routers in the AS is similar in concept
- Notice inbound and outbound prefix filters
 - outbound announces myprefixes only
 - inbound accepts peer prefixes only
- Notice inbound route-map
 - Set local preference higher than default ensures that if the same prefix is heard via AS100 upstream, the best path for traffic is via the IXP

- Ethernet port configuration
 - Be aware of LAN configuration best practices
 - Switch off proxy arp, redirects and broadcasts (if not already default)
- IXP border router must NOT carry prefixes with origin outside local AS and IXP participant ASes
 - Helps prevent "stealing of bandwidth"

□ Issues:

- AS100 needs to know all the prefixes its peers are announcing
- New prefixes requires the prefix-lists to be updated
- Alternative solutions
 - Use the Internet Routing Registry to build prefix list
 - Use AS Path filters (could be risky)

More Complex BGP example

Exchange Point Configuration

Exchange Point Example

- Exchange point with 6 ASes present
 - Layer 2 ethernet switch
- Each ISP peers with the other
 - NO transit across the IXP allowed
 - ISPs at exchange points provide transit to their BGP customers

Each of these represents a border router in a different autonomous system

Exchange Point Router A configuration

```
interface fastethernet 0/0
 description Exchange Point LAN
 ip address 120.5.10.2 mask 255.255.255.224
 no ip directed-broadcast
 no ip proxy-arp
no ip redirects
                                       Filter by ASN rather
router bgp 100
                                       than by prefix - and
 neighbor ixp-peers peer-group
                                       block bogons too
 neighbor ixp-peers send-community
 neighbor ixp-peers prefix-list bogons out
 neighbor ixp-peers filter-list 10 out
 neighbor ixp-peers route-map set-local-pref in
...next slide
```

```
neighbor 120.5.10.2 remote-as 110
neighbor 120.5.10.2 peer-group ixp-peers
neighbor 120.5.10.2 prefix-list peer110 in
neighbor 120.5.10.3 remote-as 120
neighbor 120.5.10.3 peer-group ixp-peers
neighbor 120.5.10.3 prefix-list peer120 in
neighbor 120.5.10.4 remote-as 130
neighbor 120.5.10.4 peer-group ixp-peers
neighbor 120.5.10.4 prefix-list peer130 in
neighbor 120.5.10.5 remote-as 140
neighbor 120.5.10.5 peer-group ixp-peers
neighbor 120.5.10.5 prefix-list peer140 in
neighbor 120.5.10.6 remote-as 150
neighbor 120.5.10.6 peer-group ixp-peers
neighbor 120.5.10.6 prefix-list peer150 in
```

```
ip route 121.10.0.0 255.255.224.0 null0
ip as-path access-list 10 permit ^$
ip as-path access-list 10 permit ^200$
ip as-path access-list 10 permit ^201$
ip prefix-list peer110 permit 122.0.0.0/19
ip prefix-list peer120 permit 122.30.0.0/19
ip prefix-list peer130 permit 122.12.0.0/19
ip prefix-list peer140 permit 122.18.128.0/19
ip prefix-list peer150 permit 122.1.32.0/19
route-map set-local-pref permit 10
 set local-preference 150
```

- Notice the change in router A's configuration
 - Filter-list instead of prefix-list permits local and customer ASes out to exchange
 - Prefix-list blocks Special Use Address prefixes rest get out, could be risky
- Other issues as previously
- This configuration will not scale as more and more BGP customers are added to AS100
 - As-path filter has to be updated each time
 - Solution: BGP communities

More scalable BGP example

Exchange Point Configuration

Exchange Point Example (Scalable)

- Exchange point with 6 ASes present
 - Layer 2 ethernet switch
- Each ISP peers with the other
 - NO transit across the IXP allowed
 - ISPs at exchange points provide transit to their BGP customers
- (Scalable solution is presented here)

■ Each of these represents a border router in a different autonomous system - each ASN has BGP customers of their own

Router configuration

- □ Take AS100 as an example
 - Has 15 BGP customers, in AS501 to AS515
- Create a peer-group for IXP peers
 - All outbound policy to each peer will be the same
- Communities will be used
 - AS-path filters will not scale well
- Community Policy
 - AS100 aggregate put into 100:1000
 - All BGP customer aggregates go into 100:1100

Creating a peer-group & route-map

```
router bgp 100
neighbor ixp-peer peer-group
neighbor ixp-peer send-community
neighbor ixp-peer route-map ixp-peers-out out
neighbor ixp-peer route-map set-local-pref in
ip community-list 10 permit 100:1000 ← AS100 aggregate
ip community-list 11 permit 100:1100 ← AS100 BGP customers
route-map ixp-peers-out permit 10
match community 10 11
route-map set-local-pref permit 10
                                   Prefixes heard from IXP peers
 set local-preference 150 ←
                                   have highest preference
```

BGP configuration for IXP router

```
router bgp 100
neighbor 120.5.10.2 remote-as 110
neighbor 120.5.10.2 peer-group ixp-peer
neighbor 120.5.10.2 prefix-list peer110 in
neighbor 120.5.10.3 remote-as 120
neighbor 120.5.10.3 peer-group ixp-peers
neighbor 120.5.10.3 prefix-list peer120 in
...etc
```

- Remaining configuration is the same as earlier
- Note the reliance again on inbound prefix-lists for peers
 - Peers need to update the ISP if filters need to be changed
 - And that's what the IRR is for (otherwise use email)

BGP configuration for AS100's customer aggregation router

```
router bgp 100
network 121.10.0.0 mask 255.255.192.0 route-map set-comm
neighbor 121.10.4.2 remote-as 501
neighbor 121.10.4.2 prefix-list as501-in in
neighbor 121.10.4.2 prefix-list default out
neighbor 121.10.4.2 route-map set-cust-policy in
...etc
                                     Set community on
route-map set-comm permit 10
                                     AS100 aggregate
 set community 100:1000
route-map set-cust-policy permit 10
 set community 100:1100
                                     Set community on
                                     BGP customer routes
```

Scalable IXP policy

- ISP Community policy is set on ingress
- ISP now relies on communities to determine what is announced at the IXP
 - No need to update any as-path filters, prefix-lists, &c
- If BGP customer announces more prefixes, only the filters at the aggregation edge need to be updated
 - And those new prefixes will automatically be tagged with the community to allow them through to AS100's IXP peers
- Consult the BGP community presentation for more extensive examples

Route Servers

- IXP operators quite often provide a Route Server to assist with scaling the BGP mesh
 - All prefixes sent to a Route Server are usually distributed to all ASNs that peer with the Route Server
 - (although some IXPs offer ISPs the facility to configure specific policies on their Route Server)
- BGP configuration to peer with a Route Server is the same as for any other ordinary peer
 - But note that the route server will offer prefixes from several ASNs (the IXP membership who choose to participate)
 - Inbound filter should be constructed appropriately

Route Servers

- Route Server software suppresses the ASN of the RS so that it doesn't appear in the AS-path
- IOS by default will not accept prefixes from a neighbouring AS unless that AS is first in the ASpath

```
router bgp 100

no bgp enforce-first-as

neighbor x.x.x.a remote-as 65534

neighbor x.x.x.a route-map IXP-RS-in in
neighbor x.x.x.a route-map ixp-peers-out out
```

Summary

Exchange Point Configuration

Summary

- Ensure that BGP is scalable on your IXP peering router
 - Manually updating filters every time a new customer connects is tiresome and has potential to cause errors
- Only carry local ASN prefixes and customer routes on the IXP peering router
 - Anything else (e.g. default or full BGP table) has the potential to result in bandwidth theft
- Filter IXP peer announcements
 - Inbound use the IRR if maintaining prefix-lists is difficult
 - Outbound use communities for scalability

BGP Configuration for IXPs

ISP Workshops